
COMPUTABILITY

Brief introduction to computable functions, recursive

functions, etc.

Jeanine Meyer

1 1 1

BACKGROUND
 The study of computability preceded the invention of

computers.

 What does it mean for something (a function, a set of

numbers) to be computed/calculated/evaluated in a

mechanical, procedural way?

 Related to a problem posed by Hilbert in 1900

 Solved by Alan Turing, and others (Post, Church) in the

early 1930s.

1 1 1

QUESTION

 How old are computers?

1 1 1

ANSWER(S)

 Special purpose machines existed

 Jacquard Loom

 Enigma (encoded and decoded messages for Germans

in WWII)

 Bombe developed in Bletchley Park by Turing and

others helped to find settings for a captured Enigma to

decode the codes

 ENIAC developed by the U.S. Army, ready 1946,

mainly for ballistics

1 1 1 TURING WORK
 Defined an abstract machine (is this a contradiction in

terms?): came to be called a Turing Machine for
computing specific functions…

 ALSO defined set of functions called the recursive
functions, made up by a starter set of functions with
certain ways of building on functions to get new functions
 Note: this definition of a recursive function is more general than "a

function that calls itself". Primitive recursion is one of the building
methods.

 Proved any function computed by a Turing Machine was
a recursive function AND any recursive function can be
computed by a Turing Machine.
 Also proved these two definitions equivalent to one made by Post

 Many other functions proved equivalent

1 1 1

TURING MACHINE
Imagine
An [infinite] tape with cells or slots. Each cell can

hold a symbol (from a finite alphabet) or a blank
A specific cell is under the machine head where

it can be read
The machine is in one of a finite number of

states
For each state reading a given symbol, there is a

fixed set of actions:
 Optionally, erase and write a new symbol +
 Optionally, change to another state +
 Move left, right, or stay fixed (halting)

1 1 1

TURING MACHINE FUNCTION
 A given Turing machine computes a function

F(input) output by
 representing the input on the tape and placing the head to the left

of the input

 Starting the TM in a special state called the Start state

 If the function halts, then the content on the tape represents the
output using an agreed upon representation.

 Alternative: a TM recognizes a set of numbers or a set of
strings of symbols (aka a language) if the TM halts in a
state designated as an accepting state on each
number/string in the set AND halts in a state designated
as a rejecting state on numbers/strings not in the set.

1 1 1

TURING MACHINE

A Turing machine is [specified by]

 a finite number of states

 For each S and each symbol B in the (finite) alphabet,

there is a specification of

 New state

 New symbol

 Direction

1 1 1

EXAMPLE: ADDING 1

 Let the alphabet be B (for blank) and 1

 Encode positive integers (0, 1, 2,…) by N+1 1s for
input (so zero can be represented)

 Encode (interpret) output by counting up all the 1s
on the tape (alternative: require one more 1.)

 States are Start state S, W, F for final

 Start head at start of input

1 1 1

EXAMPLE, ADDING 1

Three states: S, W, F

 State S: sees a 1, moves to the right and changes

to State W. sees a blank, does nothing

 State W: sees a 1, moves to the right. Sees a blank,

changes to State F.

 State F: does nothing

1 1 1

EXAMPLE:

ADDING 1, CONT.

 Start state S: reading a 1, changes to state W and

moves to the right.

 W state: reading a 1, moves to the right.

 W state: reading a blank, changes to final state F.

 [Alternative encoding (1 more 1 for any number):

reading a blank, write a 1 and then change to final state

F

1 1 1

EXAMPLE:

ADDING TWO INTEGERS

 Encode the two integers N and M by placing N+1

1s followed by 1 blank followed by M+1 1s

 Make output be (N+M)+1 1s contiguously on the

tape

 Alternative: use the encoding of exactly N+M 1s

anywhere on the tape.

1 1 1

CLASS WORK!

 Strategy:

 Move until TM finds the blank in the middle and write a 1
where the blank was

 Keep moving until you find the next blank (after the
second set of 1s) and erase the last 2 1s
 For alternative output encoding: erase the last 3 1s

 Double check for N and/or M being zero!

 Work in groups and make this precise (list the
states and the actions)

1 1 1

LANGUAGE

RECOGNITION TM

 Suppose an alphabet with two letters {a,b}

 Actually, more formally {a, b, blank}

 A string of letters from the alphabet is called a word:

a, ab, aab, abab, etc.

 A set of words is called a language.

 A TM recognizes a language if it stops in a state

designated as accepting (may be more than one

accepting state), etc.

1 1 1

EXAMPLES

Construct a TM that accepts the language

 {a, aa, aaa, …}

 {ab, aab, aaab, aaaab, ….}

 {a, aa, aaa, … } UNION {b, bb, bbb, …}

 Make up a language (that is, a set of patterns}

1 1 1

PALINDROMES

 What would be a TM for a palindrome (words from

alphabet {a, b}

 Brain storm strategy

1 1 1

COMPUTABLE FUNCTIONS

 The functions that can be implemented by a TM are

the computable functions.

 Reminder: the notion here wasn't an actual

machine, but to express a procedure in a effective

manner. Think of the TM as being an aid to a

human.

1 1 1

SWITCH GEARS

(SO TO SPEAK)

Define a set of functions (to be called the

recursive functions) on integers (finite

vectors of integers) in the following way

Starter (aka initial) functions

 C0(n) ≡ 0 (constant)

 S(n) ≡ n+1 (successor function)

 Pn
i(x1, x2, x3, … xn) ≡ xi (projections)

Special case Id(x) ≡ x

Grow the set of functions using 3 ways to

combine functions (aka building methods)

1 1 1

GROW THE

SET OF FUNCTIONS

 Composition: if two functions F and G are in the set,

so is F(G(input))

 Primitive recursion, if F and G are in the set, so is H

where H is defined

 H(x,0) ≡ F(x)

 H(x,S(y)) ≡ G(x,H(x,y))

 Also write this as H(x, y+1) ≡ G(x,H(x,y))

 NOTE H(x,y) is defined for all x and y

1 1 1

NOTE

 This work assumes certain properties of the

integers, arithmetic, etc.

1 1 1

ADDITION

 A(x,0) ≡ Id(x) ≡ x

 A(x, S(y)) ≡ G(x, A(x,y)) where

 G(a, b) ≡ S(P2(a,b)) = S(b) = b + 1

1 1 1

CONSTANT

 Cc(x) ≡ c for any constant c is in the set

 Cc(x) ≡ A(C0(x),c)

 Other approaches

 Since c is a constant, can write out the composition of

the successor function starting with 0.

1 1 1

SUBTRACT 1

 Partial function: it is not defined for x = 0

 Since I've used S for successor, use M

 M(S(x)) ≡ x

 Note: can use the next building function

(minimization) for an alternate definition

1 1 1

MULTIPLICATION

 H(x,0) ≡ C0(x) ≡ 0

 H(x,S(y)) ≡ G(x, H(x,y)) where

 G(a,b) ≡ Id(x) + H(x,y)

 NOTE: addition has already been established to be

in the set

Check

 H(x,0) ≡ 0 = x * 0

 H(x,S(y))≡Id(x)+H(x,y)= x + x*y = x * (S(y))

1 1 1

FACTORIAL

 Fac(0) ≡ Fac(1) ≡ 1

 Fac(S(x)) ≡ G(x, Fac(x)) where

G(a,b) ≡ (a+1) * b so

Fac(S(x)) = (x+1) * Fac(x)

1 1 1

GROW

THE SET OF FUNCTIONS, CONT.

Minimization (inverse): if F is in the set, then
so is G where G is in the set defined as
 If F(x) = y and x is the least integer such
that F(x) = y, then
G(y) ≡ x

Extend this idea to multiple inputs and
outputs

NOTE: G may not be defined for every y. A
function not defined for every input is called
a partial function

1 1 1

EXERCISE:

SUBTRACTION

 Use the minimization/inverse building approach to

define

M(a,b)

1 1 1

{COMPUTABLE FUNCTIONS} =

{RECURSIVE FUNCTIONS}

 Any function that can be represented by a TM is a
recursive function (can be constructed starting with
the starter set, using the combining steps)

 Any recursive function can be implemented by a
TM

 Proof makes use of encoding of TM using a
technique called Godel numbers.

1 1 1

UNIVERSAL TM

Is a very special Turing Machine (call it U)
that takes as input a number representing a
TM plus input (input vector of values V) and
produces what TM would produce with input
V.
 U is analogous to a general purpose computer

with someone standing by supplying more
memory as needed.

Halting problem: Turing proved that there
did not exist a TM that would accept as
input a TM T and input I and answer if the
TM would halt on that input.

1 1 1

VARIATIONS

in the rules, for example

 Multiple tapes

 Different size alphabets

don't make a difference! What can be done with a TM

of that type can be done with a TM of another type.

1 1 1

OTHER

MACHINES/SYSTEMS

 Finite automata

 Context free grammars

These are not as powerful as TM. That is, there are
languages accepted by TM for which there is not
CFG and (similarly), there are languages accepted
by CFG for which there is no Finite automata

1 1 1

DISCUSSION

 Beautiful piece of mathematics

 Study it!

 Preview: plan to offer course in computability in

Fall, 2010

