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BACKGROUND 
 The study of computability preceded the invention of 

computers. 

 What does it mean for something (a function, a set of 

numbers) to be computed/calculated/evaluated in a 

mechanical, procedural way? 

 Related to a problem posed by Hilbert in 1900 

 Solved by Alan Turing, and others (Post, Church) in the 

early 1930s. 
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QUESTION 

 How old are computers? 
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ANSWER(S) 

 Special purpose machines existed 

 Jacquard Loom 

 Enigma (encoded and decoded messages for Germans 

in WWII) 

 Bombe developed in Bletchley Park by Turing and 

others helped to find settings for a captured Enigma to 

decode the codes 

 ENIAC developed by the U.S. Army, ready 1946, 

mainly for ballistics 
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 Defined an abstract machine (is this a contradiction in 

terms?): came to be called a Turing Machine for 
computing specific functions… 

 ALSO defined set of functions called the recursive 
functions, made up by a starter set of functions with 
certain ways of building on functions to get new functions 
 Note: this definition of a recursive function is more general than "a 

function that calls itself".  Primitive recursion is one of the building 
methods. 

 Proved any function computed by a Turing Machine was 
a recursive function AND any recursive function can be 
computed by a Turing Machine. 
 Also proved these two definitions equivalent to one made by Post 

 Many other functions proved equivalent 
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TURING MACHINE 
Imagine  
An [infinite] tape with cells or slots. Each cell can 

hold a symbol (from a finite alphabet) or a blank 
A specific cell is under the machine head where 

it can be read 
The machine is in one of a finite number of 

states 
For each state reading a given symbol, there is a 

fixed set of actions: 
 Optionally, erase and write a new symbol  + 
 Optionally, change to another state  + 
 Move left, right, or stay fixed (halting) 
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TURING MACHINE FUNCTION 
 A given Turing machine computes a function  

F(input) output by  
 representing the input on the tape and placing the head to the left 

of the input 

 Starting the TM in a special state called the Start state 

 If the function halts, then the content on the tape represents the 
output using an agreed upon representation.  

 

 Alternative: a TM recognizes a set of numbers or a set of 
strings of symbols (aka a language) if the TM halts in a 
state designated as an accepting state on each 
number/string in the set AND halts in a state designated 
as a rejecting state on numbers/strings not in the set. 
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TURING MACHINE 

A Turing machine is [specified by] 

  a finite number of states 

   For each S and each symbol B in the (finite) alphabet, 

there is a specification of 

 New state 

 New symbol 

 Direction 
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EXAMPLE: ADDING 1 

 Let the alphabet be B (for blank) and 1 

 Encode positive integers (0, 1, 2,…) by N+1 1s for 
input  (so zero can be represented) 

 Encode (interpret) output by counting up all the 1s 
on the tape (alternative: require one more 1.) 

 States are Start state S, W, F for final 

 Start head at start of input 
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EXAMPLE, ADDING 1 

Three states: S, W, F 

 State S: sees a 1, moves to the right and changes 

to State W. sees a blank, does nothing 

 State W: sees a 1, moves to the right. Sees a blank, 

changes to State F. 

 State F: does nothing 
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EXAMPLE:  

ADDING 1, CONT. 

 Start state S: reading a 1, changes to state W and 

moves to the right. 

 W state: reading a 1, moves to the right. 

 W state: reading a blank, changes to final state F. 

 [Alternative encoding (1 more 1 for any number): 

reading a blank, write a 1 and then change to final state 

F 
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EXAMPLE:  

ADDING TWO INTEGERS 

 Encode the two integers N and M by placing N+1 

1s followed by 1 blank followed by M+1 1s 

 Make output be (N+M)+1 1s contiguously on the 

tape 

 Alternative: use the encoding of exactly N+M 1s 

anywhere on the tape. 

 

  



1 1 1 

CLASS WORK! 

 Strategy:  

 Move until TM finds the blank in the middle and write a 1 
where the blank was 

 Keep moving until you find the next blank (after the 
second set of 1s) and erase the last 2 1s 
 For alternative output encoding: erase the last 3 1s 

 Double check for N and/or M being zero! 

 Work in groups and make this precise (list the 
states and the actions) 
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LANGUAGE  

RECOGNITION TM 

 Suppose an alphabet with two letters {a,b} 

 Actually, more formally {a, b, blank} 

 A string of letters from the alphabet is called a word: 

a, ab, aab, abab, etc. 

 A set of words is called a language. 

 A TM recognizes a language if it stops in a state 

designated as accepting (may be more than one 

accepting state), etc. 
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EXAMPLES 

Construct a TM that accepts the language  

 {a, aa, aaa, …} 

 {ab, aab, aaab, aaaab, ….} 

 {a, aa, aaa, … } UNION {b, bb, bbb, …} 

 

 Make up a language (that is, a set of patterns} 
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PALINDROMES 

 What would be a TM for a palindrome (words from 

alphabet {a, b} 

 

 Brain storm strategy 
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COMPUTABLE FUNCTIONS 

 The functions that can be implemented by a TM are 

the computable functions. 

 

 Reminder: the notion here wasn't an actual 

machine, but to express a procedure in a effective 

manner.  Think of the TM as being an aid to a 

human. 
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SWITCH GEARS  

(SO TO SPEAK) 

Define a set of functions (to be called the 

recursive functions) on integers (finite 

vectors of integers) in the following way 

Starter (aka initial) functions 

 C0(n) ≡ 0    (constant) 

 S(n) ≡ n+1  (successor function) 

 Pn
i(x1, x2, x3, … xn) ≡ xi  (projections) 

Special case Id(x) ≡ x 

Grow the set of functions using 3 ways to 

combine functions (aka building methods) 
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GROW THE  

SET OF FUNCTIONS 

 Composition: if two functions F and G are in the set, 

so is F(G(input)) 

 Primitive recursion, if F and G are in the set, so is H 

where H is defined 

 H(x,0) ≡ F(x) 

 H(x,S(y)) ≡ G(x,H(x,y))  

 Also write this as H(x, y+1) ≡ G(x,H(x,y)) 

 NOTE H(x,y) is defined for all x and y 
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NOTE 

 This work assumes certain properties of the 

integers, arithmetic, etc. 
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ADDITION 

 A(x,0) ≡ Id(x) ≡ x 

 A(x, S(y)) ≡ G(x, A(x,y)) where  

   G(a, b) ≡ S(P2(a,b)) = S(b) = b + 1 
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CONSTANT 

 Cc(x) ≡ c for any constant c is in the set 

 

 Cc(x) ≡ A(C0(x),c) 

 

 Other approaches 

 Since c is a constant, can write out the composition of 

the successor function starting with 0. 

  



1 1 1 

SUBTRACT 1 

 Partial function: it is not defined for x = 0 

 Since I've used S for successor, use M 

 M(S(x)) ≡ x 

 

 Note: can use the next building function 

(minimization) for an alternate definition 
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MULTIPLICATION 

 H(x,0) ≡ C0(x) ≡ 0 

 H(x,S(y)) ≡ G(x, H(x,y)) where 

       G(a,b) ≡  Id(x) + H(x,y) 

 NOTE: addition has already been established to be 

in the set  

Check 

 H(x,0) ≡ 0 = x * 0  

 H(x,S(y))≡Id(x)+H(x,y)= x + x*y = x * (S(y)) 
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FACTORIAL  

 Fac(0) ≡ Fac(1) ≡  1 

 Fac(S(x)) ≡ G(x, Fac(x) ) where  

G(a,b) ≡ (a+1) * b so 

Fac(S(x)) = (x+1) * Fac(x) 
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GROW  

THE SET OF FUNCTIONS, CONT. 

Minimization (inverse): if F is in the set, then 
so is G where G is in the set defined as 
   If F(x) = y and x is the least integer such 
that F(x) = y, then 
G(y) ≡ x 

Extend this idea to multiple inputs and 
outputs 

NOTE: G may not be defined for every y.  A 
function not defined for every input is called 
a partial function 

  



1 1 1 

EXERCISE:  

SUBTRACTION 

 Use the minimization/inverse building approach to 

define 

M(a,b) 
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{COMPUTABLE FUNCTIONS} = 

{RECURSIVE FUNCTIONS} 

 Any function that can be represented by a TM is a 
recursive function (can be constructed starting with 
the starter set, using the combining steps) 

 Any recursive function can be implemented by a 
TM 

     

 Proof makes use of encoding of TM using a 
technique called Godel numbers. 
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UNIVERSAL TM 

Is a very special Turing Machine (call it U) 
that takes as input a number representing a 
TM plus input (input vector of values V)  and 
produces what TM would produce with input 
V. 
 U is analogous to a general purpose computer 

with someone standing by supplying more 
memory as needed. 

Halting problem: Turing proved that there 
did not exist a TM that would accept as 
input a TM T and input I and answer if the 
TM would halt on that input. 

  



1 1 1 

VARIATIONS 

in the rules, for example 

 Multiple tapes 

 Different size alphabets 

don't make a difference! What can be done with a TM 

of that type can be done with a TM of another type. 
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OTHER  

MACHINES/SYSTEMS 

 Finite automata 

 

 Context free grammars 

 

These are not as powerful as TM. That is, there are 
languages accepted by TM for which there is not 
CFG and (similarly), there are languages accepted 
by CFG for which there is no Finite automata 
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DISCUSSION 

 Beautiful piece of mathematics 

 

 Study it! 

 

 Preview: plan to offer course in computability in 

Fall, 2010 

  


